Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
نویسندگان
چکیده
Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inputs such as fertilizer) and so does converting the harvested product to usable fuels (feedstock conversion efficiency). The objective of this study was to quantify all these factors to determine the net effect of several bioenergy cropping systems on greenhouse-gas (GHG) emissions. We used the DAYCENT biogeochemistry model to assess soil GHG fluxes and biomass yields for corn, soybean, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in Pennsylvania, USA. DAYCENT results were combined with estimates of fossil fuels used to provide farm inputs and operate agricultural machinery and fossil-fuel offsets from biomass yields to calculate net GHG fluxes for each cropping system considered. Displaced fossil fuel was the largest GHG sink, followed by soil carbon sequestration. N20 emissions were the largest GHG source. All cropping systems considered provided net GHG sinks, even when soil C was assumed to reach a new steady state and C sequestration in soil was not counted. Hybrid poplar and switchgrass provided the largest net GHG sinks, >200 g CO2e-C x m(-2) x yr(-1) for biomass conversion to ethanol, and >400 g CO2e-C x m(-2) x yr(-1) for biomass gasification for electricity generation. Compared with the life cycle of gasoline and diesel, ethanol and biodiesel from corn rotations reduced GHG emissions by approximately 40%, reed canarygrass by approximately 85%, and switchgrass and hybrid poplar by approximately 115%.
منابع مشابه
Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and ...
متن کاملSimulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model.
We present evidence to show that DAYCENT can reliably simulate soil C levels, crop yields, and annual trace gas fluxes for various soils. DAYCENT was applied to compare the net greenhouse gas fluxes for soils under different land uses. To calculate net greenhouse gas flux we accounted for changes in soil organic C, the C equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertil...
متن کاملComparative analysis of attributional corporate greenhouse gas accounting, consequential life cycle assessment, and project/policy level accounting: A bioenergy case study
In order to avoid dangerous climate change greenhouse gas accounting methods are needed to inform decisions on mitigation action. This paper explores the differences between ‘attributional’ and ‘consequential’ greenhouse gas accounting methods, focusing on attributional corporate greenhouse gas inventories, consequential life cycle assessment, and project/policy greenhouse gas accounting. The c...
متن کاملThe Role of Simulation Models in Monitoring Soil Organic Carbon Storage and Greenhouse Gas Mitigation Potential in Bioenergy Cropping Systems
متن کامل
DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA
The DAYCENT ecosystem model (a daily version of CENTURY) and an emission factor (EF) methodology used by the Intergovernmental Panel on Climate Change were used to estimate direct and indirect N2O emission for major cropping systems in the USA. The EF methodology is currently used for the USA greenhouse gas inventory but process based models, such as DAYCENT, may yield more reliable results bec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecological applications : a publication of the Ecological Society of America
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2007